Главная Программы кандидатских экзаменов
joomla

Кандидатский минимум по Истории технических наук

ПРОГРАММА - МИНИМУМ КАНДИДАТСКОГО ЭКЗАМЕНА по курсу «История и философия науки» «История технических наук»

 

Введение

В основу настоящей программы положены следующие дисциплины: история техники, история науки, история технических наук. Программа разработана экспертным советом ВАК Минобразования России при участии Института истории естествознания и техники им С. И. Вавилова РАН.

История технических знаний как самостоятельная область исследований. Проблемы историографии технических наук. Источники по истории технических наук. Основные этапы и факторы становления и развития технических наук в контексте всеобщей истории. История развития исследований, приращения научно-технических знаний в развивающейся системе технических наук. 

1. Техника и наука как составляющие цивилизационного процесса.

Технические знания древности и античности до V в. н. э.

Религиозно-мифологическое осмысление практической деятельности в древних культурах. Технические знания как часть мифологии. Храмы и знания (Египет и Месопотамия).

Различение тэхнэ и эпистеме в античности: техника без науки и наука без техники. Появление элементов научных технических знаний в эпоху эллинизма. Начала механики и гидростатики в трудах Архимеда. Закон рычага. Пять простых машин. Развитие механических знаний в Александрийском мусейоне: работы Паппа и Герона по пневматике, автоматическим устройствам и метательным орудиям. Техническая мысль античности в труде Марка Витрувия “Десять книг об архитектуре” (1 век до н. э.). Первые представления о прочности.

Технические знания в Средние века (V–ХIV вв.).

Ремесленные знания и специфика их трансляции. Различия и общность алхимического и ремесленного рецептов. Отношение к нововведениям и изобретателям. Строительно-архитектурные знания. Горное дело и технические знания. Влияние арабских источников и техники средневекового Востока. Астрономические приборы и механические часы как медиумы между сферами науки и ремесла.

Христианское мировоззрение и особенности науки и техники в Средние века. Труд как форма служения Богу. Роль средневекового монашества и университетов (Х111 в.) в привнесении практической направленности в сферу интеллектуальной деятельности. Идея сочетания опыта и теории в науке и ремесленной практике: Аверроэс (1121-1158), Томас Брадвардин (1290-1296), Роджер Бэкон (1214-1296) и его труд “О тайных вещах в искусстве и природе”.

Возникновение взаимосвязей  между наукой и техникой. Технические знания эпохи Возрождения (ХV–ХVI вв.).

Изменение отношения к изобретательству. Полидор Вергилий “Об изобретателях вещей” (1499). Повышение социального статуса архитектора и инженера. Персонифицированный синтез научных и технических знаний: художники и инженеры, архитекторы и фортификаторы, ученые-универсалы эпохи Возрождения. Леон Батиста Альберти 1404-1472, Леонардо да Винчи 1452-1519, Альбрехт Дюрер 1471-1528, Ванноччо Бирингуччо 1480-1593, Георгий Агрикола 1494-1555, Иеронимус Кардано 1501-1576, Джанбаттиста де ля Порта 1538-1615, Симон Стевин 1548-1620 и др.

Расширение представлений гидравлики и механики в связи с развитием мануфактурного производства и строительством гидросооружений. Проблема расчета зубчатых зацеплений, первые представления о трении. Развитие артиллерии и создание начал баллистики. Трактат об огнестрельном оружии “О новой науке” Никколо Тартальи (1534), “Трактат об артиллерии” Диего. Уффано (1613). Учение о перспективе. Обобщение сведений о горном деле и металлургии в трудах Агриколы и Бирингуччо.

Великие географические открытия и развитие прикладных знаний в области навигации и кораблестроения. В. Гильберт: “О магните, магнитных телах и великом магните Земле” (1600).

 

2. Смена социокультурной парадигмы развития техники и науки в Новое время

Научная революция ХVII в.: становление экспериментального метода и математизация естествознания как предпосылки приложения научных результатов в технике.

Программа воссоединения “наук и искусств” Фрэнсиса Бэкона (1561-1626). Взгляд на природу как на сокровищницу, созданную для блага человеческого рода.

Технические проблемы и их роль в становлении экспериментального естествознания в ХVII в. Техника как объект исследования естествознания. Создание системы научных инструментов и измерительных приборов при становлении экспериментальной науки. Ученые-экспериментаторы и изобретатели: Галилео Галилей 1564-1642, Роберт Гук 1605-1703, Эванджилиста Торричелли 1608-1647, Христиан Гюйгенс 1629-1695. Ренэ Декарт 1596-1650 и его труд “Рассуждение о методе (1637). Исаак Ньютон 1643-1727 и его труд “Математические начала натуральной философии (1687).

Организационное оформление науки Нового времени. Университеты и академии как сообщества ученых-экспериментаторов: академии в Италии, Лондонское Королевское общество (1660), Парижская Академия наук (1666), Санкт-Петербургская академия наук (1724).

Экспериментальные исследования и разработка физико-математических основ механики жидкостей и газов. Формирование гидростатики как раздела гидромеханики в трудах Галлилея, Стевина, Паскаля (1623-1662) и Торричелли. Элементы научных основ гидравлики в труде “Гидравлико - пневматическая механика” (1644) Каспара Шотта.

Этап формирования взаимосвязей между инженерией и экспериментальным естествознанием (ХVIII  первая половина Х1Х вв.)

Промышленная революция конца ХVIII – середины ХIХ вв. Создание универсального теплового двигателя (Джеймс Уатт, 1784) и становление машинного производства.

Возникновение в конце ХVIII в. технологии как дисциплины, систематизирующей знания о производственных процессах: “Введение в технологию или о знании цехов, фабрик и мануфактур…” (1777) и “Общая технология” (1806) И Бекманна. Появление технической литературы: “Театр машин” Якоба Леопольда (1724-1727), “Атлас машин” А. К.Нартова (1742) и др. Работы М. В. Ломоносова (1711-1765) по металлургии и горному делу Учреждение “Технологического журнала” Санкт-Петербургской. Академией наук (1804).

Становление технического и инженерного образования. Учреждение средних технических школ в России: Школа математических и навигационных наук, Артиллерийская и Инженерная школы - 1701г.; Морская академия 1715; Горное училище 1773. Военно-инженерные школы Франции: Национальная школа мостов и дорог в Париже 1747; школа Королевского инженерного корпуса в Мезьере 1748. Парижская политехническая школа (1794) как образец постановки высшего инженерного образования. Первые высшие технические учебные учреждения в России: Институт корпуса инженеров путей сообщения 1809, Главное Инженерное училище инженерных войск 1819.

Высшие технические школы как центры формирования технических наук. Установление взаимосвязей между естественными и техническими науками. Разработка прикладных направлений в механике. Создание научных основ теплотехники. Зарождение электротехники.

Становление аналитических основ технических наук механического цикла. Учебники Белидора “Полный курс математики для артиллеристов и инженеров” (1725) и “Инженерная наука” (1729) по строительству и архитектуре. Становление строительной механики: труды Ж. Понселе, Г. Ламе, Б. П. Клапейрона. Первый учебник по сопротивлению материалов: Жирар, “Аналитический трактат о сопротивлении твердых тел”, 1798 г. Руководство Прони “Новая гидравлическая архитектура”. Расчет действия водяных колес, плотин, дамб и шлюзов: Митон, Ф. Герстнер, П. Базен, Фабр, Н. Петряев и др.

Создание гидродинамики идеальной жидкости и изучение проблемы сопротивления трения в жидкости: И. Ньютон, А. Шези, О. Кулон и др. Экспериментальные исследования и обобщение практического опыта в гидравлике. Ж. Л. Д’Аламбер, Ж. Л. Лагранж, Д. Бернулли, Л. Эйлер. Аналитические работы по теории  корабля: корабельная архитектура в составе строительной механики, теория движения корабля как абсолютно твердого тела. Л. Эйлер: теория реактивных движителей для судов (1750); трактаты “Корабельная наука”, “Исследование усилий, которые должны выносить все части корабля во время  бортовой и килевой качки” (1759). Труд П. Базена по теории движения паровых судов (1817).

Парижская политехническая школа и научные основы машиностроения. Работы Г. Монжа, Ж. Н. Ашетта, Л. Пуансо, С. Д. Пуассона, М. Прони, Ж. В. Понселе. Первый учебник по конструированию машин И. Ланца и А. Бетанкура (1819). Ж. В. Понселе: “Введение в индустриальную механику” (1829).

Создание научных основ теплотехники. Развитие учения о теплоте в ХIII в.. Вклад российских ученых М. В. Ломоносова и Г. В. Рихмана. Универсальная паровая машина Дж.Уатта (1784) Развитие теории теплопроводности. Уравнение Фурье - Остроградского (1822). Работа С. Карно “Размышление о движущей силе огня” (1824). Понятие термодинамического цикла. Вклад Ф. Араго, Г. Гирна, Дж. Дальтона, П. Дюлонга, Б. Клапейрона, А. Пти, А. Реньо и Г. Цейнера в изучение свойств пара и газа. Б. Клапейрон: геометрическая интерпретация термодинамических циклов, понятие идеального газа. Формулировка первого и второго законов термодинамики (Р. Клаузиус, В. Томпсон и др.). Разработка молекулярно-кинетической теории теплоты: Сочинение Р. Клаузиуса “О движущей силе теплоты” (1850). Закон эквивалентности механической энергии и теплоты (Майер, 1842).Определение механического эквивалента тепла (Джоуль,1847). Закон сохранения энергии (Гельмгольц, 1847). 

3. Становление и развитие технических наук и инженерного сообщества (вторая половина ХIХ–ХХ вв.).

Вторая половина ХIХ в. – первая половина ХХ в.

Формирование системы международной и отечественной научной коммуникации в инженерной сфере: возникновение научно-технической периодики, создание научно-технических организаций и обществ, проведение съездов, конференций, выставок. Создание исследовательских комиссий, лабораторий при фирмах. Развитие высшего инженерного образования (конец ХIХ в. – начало ХХ в.).

Формирование классических технических наук: технические науки механического цикла, система теплотехнических дисциплин, система электротехнических дисциплин. Изобретение радио и создание теоретических основ радиотехники.

Разработка научных основ космонавтики. К. Э. Циолковский, Г. Гансвиндт, Ф. А. Цандер, Ю. В. Кондратюк и др.(начало 20 в.). Создание теоретических основ полета авиационных летательных аппаратов. Вклад Н. Е. Жуковского, Л. Прандтля, С. А. Чаплыгина. Развитие экспериментальных аэродинамических исследований. Создание научных основ жидкостно-ракетных двигателей. Р. Годдард (1920-е). Теория воздушно-реактивного двигателя (Б. С. Стечкин, 1929). Теория вертолета: Б. Н. Юрьев, И. И. Сикорский, С. К. Джевецкий. Отечественные школы самолетостроения: Поликарпов, Илюшин, Туполев, Лавочкин, Яковлев, Микоян, Сухой и др. Развитие сверхзвуковой аэродинамики.

А. Н. Крылов (1863-1945) - основатель школы отечественного кораблестроения. Опытовый бассейн в г. Санкт-Петербурге как исследовательская морская лаборатория.

Завершение классической теории сопротивления материалов в начале ХХ в. Становление механики разрушения и развитие атомистических взглядов на прочность. Сетчатые гиперболоидные конструкции В. Г. Шухова (начало XX в.). Исследование устойчивости сооружений.

Развитие научных основ теплотехники. Термодинамические циклы: У. Ранкин(1859), Н. Отто (1878), Дизель (1893), Брайтон (1906). Клаузиус, У. Ранкин, Г. Цейнери: формирование теории паровых двигателей. Г. Лаваль, Ч. Парсонс, К. Рато, Ч. Кёртис: создание научных основ расчета паровых турбин. Крупнейшие представители отечественной теплотехнической школы (вторая половина Х1Х – первая треть ХХ в.): И. П. Алымов, И. А. Вышнеградский , А. П. Гавриленко, А. В. Гадолин, В. И. Гриневецкий, Г. Ф. Депп, М. В. Кирпичев, К. В. Кирш, А. А. Радциг, Л. К. Рамзин, В. Г. Шухов. Развитие научно-технических основ горения и газификации топлива. Становление теории тепловых электростанций (ТЭС) как комплексной расчетно-прикладной дисциплины. Вклад в развитие теории ТЭС: Л. И. Керцелли, Г. И. Петелина, Я. М. Рубинштейна, В. Я. Рыжкина, Б. М. Якуба и др.

Развитие теории механизмов и машин. “Принципы механизма” Р. Виллиса (1870) и “Теоретическая кинематика” Ф. Рело (1875), Германия. Петербургская школа машиноведения 1860 – 1880 гг. Вклад П. Л. Чебышева в аналитическое решение задач по теории механизмов. Труды М. В. Остроградского. Создание теории шарнирных механизмов. Работы П. О. Сомова, Н. Б. Делоне, В. Н. Лигина, Х. И. Гохмана. Работы Н. Е. Жуковского по прикладной механике. Труды Н.И Мерцалова по динамике механизмов, Л. В. Ассура по классификации механизмов. Вклад И. А. Вышнеградского в теоретические основы машиностроения, теорию автоматического регулирования, создание отечественной школы машиностроения. Формирование конструкторско-технологического направления изучения машин. Создание курса по расчету и проектированию деталей и узлов машин – “детали машин”: К Бах (Германия), А. И Сидоров (Россия, МВТУ). Разработка гидродинамическая теории трения: Н. П. Петров. Создание теории технологических (рабочих ) машин. В. П. Горячкин “Земледельческая механика” (1919). Развитие машиноведения и механики машин в работах П. К. Худякова, С. П. Тимошенко, С. А. Чаплыгина, Е. А. Чудакова, В. В. Добровольского, И. А. Артоболевского, А. И. Целикова и др.

Становление технических наук электротехнического цикла. Открытия, эксперименты, исследования  в физике (А. Вольта, А. Ампер, Х. Эрстед,  М. Фарадей, Г. Ом и др.) и возникновение изобретательской деятельности в электротехнике. Э. Х. Ленц: принцип обратимости электрических машин, закон выделения тепла в проводнике с током Ленца – Джоуля. Создание основ физико-математического описания процессов в электрических цепях: Г. Кирхгоф, Г. Гельмгольц, В. Томсон (1845–1847 гг.). Дж. Гопкинсон: разработка представления о магнитной цепи машины (1886). Теоретическая разработка проблемы передачи энергии на расстояние: В. Томсон, В. Айртон, Д. А. Лачинов, М. Депре, О. Фрелих и др. Создание теории переменного тока. Т. Блекслей (1889), Г. Капп, А. Гейланд и др.: разработка метода векторных диаграмм (1889). Вклад М. О. Доливо – Добровольского в теорию трехфазного тока. Возникновение теории вращающихся полей, теории симметричных составляющих. Ч. П. Штейнметц и метод комплексных величин для цепей переменного тока (1893–1897). Формирование схем замещения. Развитие теории переходных процессов. О. Хевисайд и введение в электротехнику операционного исчисления. Формирование теоретических основ электротехники как научной и базовой учебной дисциплины. Прикладная теория поля. Методы топологии Г. Крона, матричный и тензорный анализ в теории электрических машин. Становление теории электрических цепей как фундаментальной технической теории (1930-е гг.).

Создание научных основ радиотехники. Возникновение радиоэлектроники. Теория действующей высоты и сопротивления излучения антенн Р. Рюденберга — М. В .Шулейкина (1910-е – начало 1920-х гг.). Коэффициент направленного действия антенн (1929 г. — А. А. Пистолькорс). Расчет многовибраторных антенн (В. .В. Татаринов, 1930-е гг.). Работы А. Л. Минца по схемам мощных радиопередатчиков. Расчет усилителя мощности в перенапряженном режиме (А. Берг, 1930-е гг.). Принцип фазовой фокусировки электронных потоков для генерирования СВЧ (Д. Рожанский, 1932). Теория полых резонаторов (1939 г. – М. С. Нейман). Статистическая теория помехоустойчивого приема (1946 г. – В. А. Котельников), теория помехоустойчивого кодирования (1948 г. – К. Шеннон). Становление научных основ радиолокации.

Математизация технических наук. Формирование к середине ХХ в. фундаментальных разделов технических наук: теория цепей, теории двухполюсников и четырехполюсников, теория колебаний и др. Появление теоретических представлений и методов расчета, общих для фундаментальных разделов различных технических наук. Физическое и математическое моделирование.

Эволюция технические наук во второй половине ХХ в. Системно-интегративные тенденции в современной науке и технике.

Масштабные научно-технические проекты (освоение атомной энергии, создание ракетно-космической техники). Проектирование больших технических систем. Формирование системы “фундаментальные исследования – прикладные исследования – разработки”.

Развитие прикладной ядерной физики и реализация советского атомного проекта, становление атомной энергетики и атомной промышленности. Вклад И В Курчатова, А. П. Александрова, Н. А. Доллежаля, Ю. Б. Харитона др. Новые области научно-технических знаний. Развитие ядерного приборостроения и его научных основ. Создание искусственных материалов, становление теоретического и экспериментального материаловедения Появление новых технологий и технологических дисциплин.

Развитие полупроводниковой техники, микроэлектроники и средств обработки информации. Зарождение квантовой электроники: принцип действия молекулярного  генератора (1954 – Н. Г. Басов, А. М. Прохоров, Ч. Таунс, Дж. Гордон, Х. Цейгер) и оптического квантового генератора (1958–1960 гг. – А. М. Прохоров, Т. Мейман). Развитие теоретических принципов лазерной техники. Разработка проблем волоконной оптики

Научное обеспечение пилотируемых космических полетов (1960–1970 гг.). Вклад в решение научно-технических проблем освоения космического пространства С. П. Королева, М. В. Келдыша, Микулина, В. П. Глушко, В. П. Мишина, Б. В. Раушенбаха и др.

Проблемы автоматизации и управления в сложных технических системах. От теории автоматического регулирования к теории автоматического управления и кибернетике (Н. Винер). Развитие средств и систем обработки информации и создание теории информации (К. Шеннон). Статистическая теория радиолокации. Системно - кибернетические представления в технических науках.

Смена поколений ЭВМ и новые методы исследования в технических науках. Решение прикладных задач на ЭВМ. Развитие вычислительной математики Машинный эксперимент. Теория оптимизационных задач и методы их численного решения. Имитационное моделирование.

Компьютеризация инженерной деятельности Развитие информационных технологий и автоматизация проектирования. Создание интерактивных графических систем проектирования (И. Сазерленд, 1963). Первые программы анализа электронных схем и проектирования печатных плат, созданные в США и СССР (1962–1965). Системы автоматизированного проектирования, удостоенные государственных премий СССР (1974, 1975).

Исследование и проектирование сложных “человеко-машинных” систем: системный анализ и системотехника, эргономика и инженерная психология, техническая эстетика и дизайн. Образование комплексных научно-технических дисциплин. Экологизация техники и технических наук. Проблема оценки воздействия техники на окружающую среду. Инженерная экология. 

Рекомендуемая литература.

1. Боголюбов А. Н. Теория механизмов и машин в историческом развитии ее идей. М.: Наука, 1976. 466 с.

2. Веселовский И. Н. Очерки по истории теоретической механики. – М.: Высшая школа, 1974. 288 с.

3. Горохов В. Г. Знать, чтобы делать. История инженерной профессии и ее роль в современной культуре. М.: Знание, 1987. 176 с.

4. Иванов Б. И., Чешев В. В. Становление и развитие технических наук. Л.: Наука, 1977. 263 с.

5. История электротехники // под ред. И. А. Глебова. М.: изд. МЭИ, 1999.

6. Козлов Б. И. Возникновение и развитие технических наук. Опыт историко-теоретического исследования. Л.: Наука, 1988. 248 с.

7. Мандрыка А. П. Взаимосвязь механики и техники: 1770–1970. Л.: Наука, 1975. 324 с.

8. Мандрыка А. П. Очерки развития технических наук. Л.: Наука, 1984. 108 с.

9. Научные школы Московского государственного технического университета им. Н. Э. Баумана. История развития // под. ред. И. Б. Федорова и К. С. Колесникова. М.: Изд-во МГТУ им. Н. Э. Баумана, 1995. 424 с.

10. Симоненко О. Д. Электротехническая наука в первой половине ХХ века. М.: Наука, 1988. 144 с.

11. Современная радиоэлектроника (50–80-е гг.) // под ред. В. П. Борисова, В. М. Родионова. М.: Наука, 1993.

12. Формирование радиоэлектроники (середина 20-х – середина
50-х гг.) // под ред. В. М. Родионова. М., Наука, 1988.

Кандидатский минимум по Истории физики

ПРОГРАММА — МИНИМУМ КАНДИДАТСКОГО ЭКЗАМЕНА ПО КУРСУ «История и философия науки» «История физики»

Введение

В основу настоящей программы положена дисциплина история физики. Программа-минимум разработана Институтом истории естествознания и техники им. С. И. Вавилова РАН и одобрена экспертными советами Высшей аттестационной комиссии РФ по истории и по физике. 

1. Вводная часть

Натурфилософские корни физики. Физика в системе естественных наук. Физика и техника. Эксперимент и теория. Физические явления, законы природы и принципы физики. Математические структуры физических теорий. Физика и философия. Институциализация физики. Научное сообщество физиков.  Методологические подходы к изучению развития физики: картины мира, исследовательские программы, научные революции.

2. Доклассическая физика

2.1. Физические знания в Античности. От натурфилософии к статике Архимеда и геоцентрической системе Птолемея.

Эволюция представлений о природе и её первоначалах у досократиков. Античные атомисты (Левкипп, Демокрит, Эпикур, Лукреций Кар). Пифагор и Платон — провозвестники математического естествознания. Физика и космология Аристотеля. Евклид и его «Начала». Архимед и Герон Александрийский: законы рычага и гидростатики, пять простых машин. Проблема измерения времени. Оптика Евклида, Архимеда, Герона Александрийского и Птолемея. Геоцентрическая система мира Птолемея.

2.2. Физика Средних веков (XIXIV вв.).

Упадок европейской науки. Освоение античного знания арабской наукой: статика и учение об удельных весах (аль-Бируни, аль-Хазини и др.), оптика (Альхазен и др.), строение вещества (Аверроэс). Влияние арабов на возраждающуюся европейскую науку XIXIII вв.

Возникновение университетов. Статистика в сочинениях Иордана Неморария. Кинематические исследования У. Гейтсбери и Т. Брадвардина (понятие скорости неравномерного движения), а также У. Оккама и Ж. Буридана (концепция импетуса и проблема относительности движения). Учение о свете (Р. Гроссетест, Р. Бэкон, Э  Вителий).

2.3. Физика в эпоху Возрождения и коперниканская революция в астрономии (XVXVI вв.).

Возрождение культурных ценностей античности. Феномен гуманизма и его связь с познанием природы. Сближение инженерного дела и естественных наук.

Физические открытия, механика и изобретения Леонардо да Винчи (законы трения, явления капиллярности, фотометрия и геометрическая оптика и т. д.). Статика и гидростатика С. Стевина. Н. Тарталья, Дж. Бенедетти и др. — предшественники галилеевского учения о движении. Создание Н. Копер-ником гелиоцентрической системы мира — важная предпосылка научной революции XVII в.

3. Научная революция XVII в. и её вершина — классическая

 механика Ньютона

3.1. Подготовительный, предньютоновский период.

Кеплеровские законы движения планет. Механика Г. Галилея. Метод мысленного эксперимента. Закон падения тел, принципы инерции и относительности, параболическая траектория движения снаряда. Галилей — наблюдатель и экспериментатор. Процесс Галилея. Методология науки в сочинениях Ф. Бэкона и Р. Декарта. Картезианская картина мира и вклад Декарта в физику. Академии — основная форма институциализации науки.

Механика Х. Гюйгенса. Динамика равномерного кругового движения, формула центробежной силы. Маятниковые часы. Законы сохранения. Теория физического маятника. Теория упругого удара.

Основные достижения физики XVII в. Исследования У. Гильберта в области электричества и магнетизма. Геометрическая оптика Кеплера, В. Снеллиуса и Декарта; принцип П. Ферма. Конечность скорости света (О. Рёмер). Наблюдения дифракции света (Ф. Гримальди, Р. Гук). Учение о пустоте, пневматика, учение о газах и теплоте (О. Герике, Э. Торричелли, Б. Паскаль, Р. Бойль и др.).

3.2. Создание Ньютоном основ классической механики.

«Математические начала натуральной философии» Ньютона. Путь Ньютона к созданию «Начал». Структура «Начал». Представление о пространстве и времени (абсолютные пространство и время, симметрии пространства и времени, принцип относительности). Три основных закона ньютоновской механики. Закон всемирного тяготения и небесная механика. Вывод законов Кеплера. Место законов сохранения в системе Ньютона. Ньютоновская космология. Геометрические и дифференциально-аналитические формулировки законов механики. Вклад Г. Лейбница в механику. Оптика Ньютона.

3.3. Триумф ньютонианства и накопление физических знаний в век Просвещения — XVIII в.

Восприятие механики Ньютона в континентальной Европе. Аналитическое развитие механики: от Л. Эйлера и Ж. Даламбера до Ж. Л. Лагранжа и У. Р.  Гамильтона. Создание основ гидродинамики (Л. Эйлер, Д. Бернулли, Даламбер). Успехи небесной механики, особенно в трудах П. С. Лапласа. Предвосхищение идеи “чёрных дыр” Дж. Мичелом и Лапласом, а также эффекта отклонения луча света, проходящего около массивного тела (И. Г. фон Зольднер). Классико-механическая картина мира (программа “молекулярной механики” Лапласа).

Исследование электричества и магнетизма — на пути к количественному эксперименту (Г. Рихман, Г. Кавендиш, О. Кулон). Флюидные и эфирные представления об электричестве Б. Франклина, Ф. Эпинуса, М. В. Ломоносова и Л. Эйлера. “Гальванизм” и явление электрического тока (Л. Гальвани, А. Вольта, В. В. Петров).

Развитие основных понятий учения о теплоте; представление о теплороде и кинетической природе теплоты (М. В. Ломоносов, Дж. Блэк, А. Лавуазье). Корпускулярная оптика: от Ньютона до Лапласа. Элементы волновых представлений о свете (Эйлер).

4. Классическая наука (XIX в.)

4.1. Начало формирования классической физики на основе точного эксперимента, феноменологического подхода и математического анализа (1800–1820-е гг.).

Парижская политехническая школа – детище Великой французской революции и лидер математико-аналитического подхода к физике. Волновая теория света О. Френеля (её развитие в работах О. Коши). Электродинамика (от Х. Эрстеда к А. М. Амперу). Теория теплопроводности Ж. Фурье. Теория тепловых машин С. Карно. Ключевая концепция Фурье — физика как теория дифференциальных уравнений с частными производными 2-го порядка. Освоение французского опыта в Германии (Г. С. Ом, Фр. Нейман и др.), Британии (Дж. Грин, У. Томсон и др.), России (Н. И. Лобачевский, М. В. Остроградский и др.). Формирование физики как научной дисциплины в России (от Э. Х. Ленца до А. Г. Столетова).  

4.2. Единая полевая теория электричества, магнетизма и света: от М.  Фарадея к Дж.  К.  Максвеллу (1830–1860-е гг.).

Накопление знаний об электричестве и магнетизме в 1820–1830-е гг. (Дж. Генри, М. Фарадей, Э. Х. Ленц, Б. С. Якоби и др.).

Фарадеевская программа синтеза физических взаимодействий на основе концепции близкодействия. Открытие Фарадеем электромагнитной индукции. Силовые линии и идея поля у Фарадея. Электродинамика дальнодействия и её конкуренция с программой близкодействия (В. Вебер, Ф. Нейман, Г. Гельмгольц и др.). Генезис теории электромагнитного поля Максвелла. Уравнения Максвелла. Электромагнитные волны и электромагнитная теория света. Представление о локализации и потоке энергии электромагнитного поля (Н. А. Умов, Дж. Пойнтинг и др.). Опыты Г. Герца с электромагнитными волнами и другие экспериментальные подтверждения теории (в частности, обнаружение П. Н. Лебедевым светового давления). Симметричная формулировка уравнений Максвелла Г. Герцем и О. Хевисайдом. Изобретение радио (А. С. Попов, Г. Маркони).

4.3. Физика тепловых явлений. Закон сохранения энергии и основы термодинамики (1840–1860-е гг.).

Открытие закона сохранения энергии как соотношения энергетической эквивалентности всех видов движения и взаимодействия (Дж. П. Джоуль, Г. Гельмгольц и Р. Майер, 1840-е гг.). Введение У. Томсоном абсолютной шкалы температуры. Соединение идей С. Карно с концепцией сохранения энергии — рождение термодинамики в работах Р. Клаузиуса, У. Томсона и У. Ранкина (1850-е гг.). Второе начало термодинамики для обратимых и необратимых процессов, понятие энтропии и проблема “тепловой смерти” Вселенной. Последующее развитие термодинамики: химическая термодинамика Дж. У. Гиббса, третье начало термодинамики В. Нернста и элементы термодинамики неравновесных процессов.

4.4. Физика тепловых явлений. Кинетическая теория газов и статистическая механика (1850–1900-е гг.).

Кинетическая теория газов Клаузиуса и Максвелла (и их предшественники). Создание основ статистической механики: распределение Максвелла – Больцмана, от попытки механического обоснования 2-го начала термодинамики к его статистическому обоснованию Больцманом. Кинетическое уравнение Больцмана. Развитие статистической механики Гиббсом. Теория Броуновского движения и доказательство реальности существования атомов (А. Эйнштейн, М. Смолуховский, Ж. Перрен). Эргодическая гипотеза и её развитие в XX в. Статистическая физика.

5. Научная революция в физике в первой трети XX в.

и её вершина – квантово-релятивистские теории

5.1. Экспериментальный прорыв в микромир; кризис классической физики; электромагнитно-полевая картина мира.

Лавина экспериментальных открытий: рентгеновские лучи, радиоактивность, электрон, эффект Зеемана (В. К. Рентген, А. Беккерель, Дж. Томсон, М. Складовская-Кюри, П. Кюри, Э. Резерфорд и др.). Кризис клас-сической физики: проблемы эфирного ветра (А. Майкельсон, Х. А. Лоренц, Дж. Фитцджеральд и др.), распределения энергии в спектре чёрного тела (В. Вин, О. Люммер, Э. Принсгейм, Г. Рубенс, Ф. Курлбаум, М. Планк), ста-тистического обоснования 2-го начала термодинамики (Больцман, Гиббс и др.); критика классико-механической картины мира (Э. Мах, П. Дюгем, А. Пуанкаре). Электронная теория Х. А. Лоренца и электромагнитно-полевая картина мира.

5.2. Квантовая теория излучения М. Планка. Световые кванты А. Эйнштейна (1900-е гг.).

Предыстория: понятие абсолютно чёрного тела, законы теплового излу-чения (Г. Кирхгоф, Й. Стефан, Л. Больцман). Проблема распределения энергии в спектре излучения абсолютно чёрного тела и её светотехнические истоки. Первые попытки решения проблемы: формулы В. А. Михельсона, В. Вина, Дж. Релея, М. Планка. Квантовая гипотеза Планка; постоянная Планка; планковский закон излучения. Световые кванты Эйнштейна и квантовая теория фотоэффекта. Открытия Эйнштейном корпускулярно-волнового дуализма для света. Введение понятия индуцированного излучения и вывод на его основе формулы Планка (Эйнштейн): важное значение этого понятия для квантовой электроники.

5.3. Специальная теория относительности (1900-е гг.).

Сокращение Фитцджеральда – Лоренца и преобразования Лоренца, А. Пуанкаре и Эйнштейна (1904–1906 гг.) — создание фундамента специальной теории относительности. Завершение теории Эйнштейна: аксиоматика теории, операционально-измерительная и релятивистская трактовка теории, отказ от эфира. Экспериментальное подтверждение теории относительности. Четырёхмерная формулировка теории Г. Минковским. Релятивистская перестройка классической физики. Возникновение на основе теории относительности теоретико-инвариантного подхода.

5.4. Общая теория относительности. Релятивистская космология. Проекты геометрического полевого синтеза физики (1910–1920-е гг.).

Положение в теории тяготения на рубеже XIX и XX вв. Принцип эквивалентности Эйнштейна, основанный на релятивистском истолковании равенства инертной и гравитационной масс.

Тензорно-геометрическая концепция гравитации. Открытие общековариантных уравнений гравитационного поля — завершение основ теории. Возникновение релятивистской космологии: от А. Эйнштейна до А. А. Фрид-мана. Последующее развитие теории (гравитационные волны, закон сохранения энергии-импульса и теоремы Э. Нетер и др.) и её экспериментальное подтверждение (А. Эддингтон и др.).

Проекты единых теорий поля, основанные на идее геометризации физических взаимодействий, и их неудачи (теории Г. Вейля, Т. Калуцы, А. Эйнштейна). Эвристическое значение единых теорий поля.

5.5. Квантовая теория атома водорода Н. Бора и её обобщение

(1910–1920-е гг.).

Сериальные спектры и ранние модели структуры атомов. Открытие Э. Резерфордом ядерного строения атомов. Квантовая теория атома водорода Бора. Принцип соответствия Бора. Квантовые условия Бора – А. Зоммерфельда. Объяснение оптических и рентгеновских спектров атомов. Попытки объяснения периодической системы элементов. Принцип запрета В. Паули и спин электрона. Трудности  теории. Квантовая теория дисперсии и гипотеза Н. Бора, Х. Крамерса и Дж. Слэтера о статистическом характере закона сохранения энергии и импульса.

5.6. Квантовая механика (1925–1930-е гг.).

Квантовая механика в матричной форме (В. Гейзенберг, М. Борн, П. Иордан). Волны вещества Л. де Бройля и волновая механика Э. Шредингера. Экспериментальное подтверждение волновой природы микрочастиц (К. Дэвиссон, А. Джермер, Дж. П. Томсон). Развитие операторной формулировки квантовой механики (П. Дирак и др.) и доказательство эквивалентности её различных форм. Вероятностная интерпретация квантовой механики (М. Борн). Принципы неопределённости (Гейзенберг) и дополнительности (Бор) – основа физической интерпретации квантовой механики. Проблема причинности в квантовой механике и дискуссии между Бором и Эйнштейном. Квантовые статистики, симметрия и спин. Важнейшие приложения квантовой механики (в частности, работы советских учёных Я. И. Френкеля, В. А. Фока, Л. И. Мандельштама, И. Е. Тамма, Г. А. Гамова, Л. Д. Ландау). Открытие комбинационного рассеяния света (Ч. Раман, Л. И. Мандельштам, Г. С. Ландсберг). Основные центры и научные школы отечественной физики в 1920–1940-е гг. (школы А. Ф. Иоффе, Д. С. Рождественского, Л. И. Мандельштама, С. И. Вавилова, Л. Д. Ландау и др.).

5.7. Квантовая электродинамика, релятивистская квантовая теория электрона и квантовая теория поля (1927–1940-е гг.).

Проблема квантования электромагнитного поля до создания квантовой механики (П. Эренфест, П. Дебай, А. Эйнштейн). Квантовая теория излучения П. Дирака. Релятивистские волновые уравнения (Э. Шредингер, О. Клейн, В. А. Фок, В. Гордон).

Уравнение Дирака для электрона, включающее теорию спина. Дираковские теория “дырок” и открытие позитрона. Общая схема построения квантовой теории поля по В. Гейзенбергу и В. Паули. Соотношение неопределённостей в квантовой электродинамике. Проблема расходимостей и её решение в конце 40-х гг. (Р. Фейнман и др.). Экспериментальное подтверждение квантовой электродинамики.

5.8. Физика атомного ядра и элементарных частиц (от нейтрона до мезонов). Космические лучи и ускорители заряженных частиц (1930–1940-е  гг.).

1932 г. — решающий год в развитии физики ядра и элементарных частиц (открытие Дж. Чедвиком нейтрона, гипотеза Д. Д. Иваненко и В. Гейзенберга о протонно-нейтронном строении ядра, первые ядерные реакции с искусственно ускоренными протонами и др.). Эффект Вавилова — Черенкова, его объяснение и последующее применение в ядерной физике (П. А. Черенков, И. Е. Тамм, И. М. Франк — первая отечественная Нобелевская премия по физике). Космические лучи. Первые ускорители заряженных частиц. Первые теории ядерных сил (И. Е. Тамм, В. Гейзенберг, Х. Юкава). Открытие сильных и слабых взаимодействий элементарных частиц. Ядерные модели. Искусственная радиоактивность. Воздействие нейтронов на ядра (Э. Ферми, И. В. Курчатов и др.). Открытие ядерного деления (О. Ган и Ф. Штрассман, Л. Мейтнер и О. Фриш), теория деления Бора – Дж. Уилера и Я. И. Френкеля. Принцип автофазировки (В. И. Векслер, Э. Мак-Миллан) и разработка нового поколения циклических ускорителей.

6. Основные линии развития современной физики

(вторая половина XX в.)

6.1. Ядерное оружие и ядерные реакторы. Проблемы управляемого термоядерного синтеза.

Цепная ядерная реакция деления урана и введение понятия критической массы. Первые инициативы о принятии государственных программ по созданию атомной бомбы (Англия, США, Германия, СССР). Пуск первого ядерного реактора (США, Э. Ферми, 1942). Два основных направления развития государственных ядерных программ: плутонивое — с использованием ядерных реакторов; и урановое — с использованием разделительных установок. Создание атомной промышленности и первых атомных бомб в США (1945) и СССР (1949) (под руководством Р. Оппенгеймера и И. В. Курчатова).

Предыстория освоения термоядерной энергии. Создание термоядерного оружия в США и СССР. Атомная энергетика. Проблема термоядерного синтеза в Англии, США и СССР. Резкий рост физических исследований, вызванный “ядерной революцией” в военном деле, промышленности и энергетике. Политические, социальные и этические аспекты “ядерной революции” во 2-й половине XX в.

6.2. Физика конденсированного состояния и квантовая электроника.

Квантовая механика – теоретическая основа физики конденсированного состояния (ФКС) и квантовой электроники (КЭ). Зонная теория. Метод квазичастиц. Магнитно-резонансные явления: электронный парамагнитный резонанс (ЭПР, Е. К. Завойский) и ядерный магнитный резонанс (ЯМР). Исследование полупроводников и открытие транзисторного эффекта. Физика явлений  сверхпроводимости и сверхтекучести. Теория фазовых переходов. Гетероструктуры.

Радиоспектроскопические предпосылки квантовой электроники. Создание мазеров и лазеров. ФКС и КЭ – важные источники технических приложений физики второй половины XX в. Воздействие идей и методов ФКС и КЭ на смежные области физики, химию, биологию и медицину. Основные научные центры и школы в области ФКС и КЭ. Значительность отечественного вклада в оба направления (ФКС — школа А. Ф. Иоффе, П. Л. Капица, Л. Д. Ландау, Ж. И. Алфёров и др.; КЭ — Н. Г. Басов, А. М. Прохоров и др.).

6.3. Физика высоких энергий: на пути к стандартной модели.

Интенсивное развитие физики элементарных частиц и высоких энергий, вызванное успешной реализацией национальных ядерно-оружейных программ (1950–1960-е гг.). Создание больших ускорителей заряженных частиц. Коллайдеры и накопительные кольца. Пузырьковые камеры и другие средства регистрации частиц.

Квантовая теория поля – теоретическая основа физики элементарных частиц. Физика нейтрино и слабых взаимодействий. Концепция калибровочного поля и разработка на её основе перенормируемых квантовой хромодинамики (КХД) (современного аналога теории сильных взаимодействий) и единой теории электрослабых взаимодействий.

6.4. Релятивистские астрофизика и космология.

Теоретическая основа астрофизики и космологии – общая теория относительности. Волна открытий в астрофизике и космологии 1960-х гг., связанных с развитием радиотелескопов, рентгеновской и гамма-астрономии. Открытие квазаров; реликтового излучения, подтверждающего гипотезу “горячей Вселенной”; пульсаров, отождествлённых с нейтронными звёздами. Рентгеновские и гамма-телескопы на искусственных спутниках Земли (ИСЗ). Развитие физики чёрных дыр. Нейтринная астрономия. Инфляционная космология. Проблема гравитационных волн. Гравитационные линзы. Проблема скрытой массы. Космологические модели с l-членом в уравнениях Эйнштейна и космический вакуум.

7. Заключительная часть

Общая характеристика квантово-релятивистской картины мира (парадигма). Нерешённые проблемы физики в начале XXI в. Проблема единой теории 4-х фундаментальных взаимодействий. Квантовая теория гравитации и суперструны. Проблема грядущих научных революций в физике.  

Рекомендуемая основная литература

1. Ансельм А. И. Очерки развития физической теории в первой трети XX  в. М.: Наука, 1986.

2. Гинзбург В. Л. Какие проблемы физики и астрофизики представляются сейчас особенно важными и интересными? // Гинзбург В. Л. О физике и астрофизике: статьи и выступления. 3-е изд. М.: Бюро Квантум, 1995. (обновлённый и дополненный вариант в кн.: Гинзбург В. Л. О науке, о себе и о других. М.: Физматлит, 2001.

3. Глестон С. Атом. Атомное ядро. Атомная энергия. Развитие представлений об атоме и атомной энергии. М.: ИЛ, 1961.

4. Дорфман Я. Г. Всемирная история физики (с древнейших времён до конца XVIII в.). М,: Наука, 1974.

5. Дорфман Я. Г. Всемирная история физики (с начала XIX до середины XX вв.). М.: Наука, 1979.

6. Очерки развития основных физических идей / Ред. А. Т. Григорьян, Л. С. Полак. М.: АН СССР, 1959.

7. Уиттекер Э. Т. История теорий эфира и электричества. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001

8. Физика XIXXX вв. в общенаучном и социокультурном контекстах. Физика XIX в. / Ред. Л. С. Полак, В. П. Визгин. М.: Наука, 1995.  

Дополнительная литература

1. Дунская И. М. Возникновение квантовой электроники. М.: Наука, 1974.

2. Каганов М. И., Френкель Я. И. Вехи истории физики твёрдого тела. М.: Знание, 1981.

3. Кирсанов В. С. Научная революция XVII в. М.: Наука, 1987.

4. Окунь Л. Б. Физика элементарных частиц. М.: Наука, 1988.

5. Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М.: Наука, 1989.

6. Физика XIXXX вв. в общенаучном и социокультурном контекстах. Физика XX в. / Ред. Г. М. Идлис. М.: Янус-К, 1997.

Еще статьи...

Главная Программы кандидатских экзаменов
Сейчас 123 гостей онлайн